Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Immunol ; 13: 1003975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531986

RESUMO

Junctional adhesion molecule-A (JAM-A), expressed on the surface of myeloid cells, is required for extravasation at sites of inflammation and may also modulate myeloid cell activation. Infiltration of myeloid cells is a common feature of tumors that drives disease progression, but the function of JAM-A in this phenomenon and its impact on tumor-infiltrating myeloid cells is little understood. Here we show that systemic cancer-associated inflammation in mice enhanced JAM-A expression selectively on circulating monocytes in an IL1ß-dependent manner. Using myeloid-specific JAM-A-deficient mice, we found that JAM-A was dispensable for recruitment of monocytes and other myeloid cells to tumors, in contrast to its reported role in inflammation. Single-cell RNA sequencing revealed that loss of JAM-A did not influence the transcriptional reprogramming of myeloid cells in the tumor microenvironment. Overall, our results support the notion that cancer-associated inflammation can modulate the phenotype of circulating immune cells, and we demonstrate that tumors can bypass the requirement of JAM-A for myeloid cell recruitment and reprogramming.


Assuntos
Molécula A de Adesão Juncional , Camundongos , Animais , Microambiente Tumoral/genética , Células Mieloides/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo
2.
Cancer Res ; 82(20): 3785-3801, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35979635

RESUMO

Agonistic αCD40 therapy has been shown to inhibit cancer progression in only a fraction of patients. Understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is therefore crucial to identify responsive patient populations and to design efficient combinatorial treatments. Here, we show that the therapeutic efficacy of αCD40 in subcutaneous melanoma relies on preexisting, type 1 classical dendritic cell (cDC1)-primed CD8+ T cells. However, after administration of αCD40, cDC1s were dispensable for antitumor efficacy. Instead, the abundance of activated cDCs, potentially derived from cDC2 cells, increased and further activated antitumor CD8+ T cells. Hence, distinct cDC subsets contributed to the induction of αCD40 responses. In contrast, lung carcinomas, characterized by a high abundance of macrophages, were resistant to αCD40 therapy. Combining αCD40 therapy with macrophage depletion led to tumor growth inhibition only in the presence of strong neoantigens. Accordingly, treatment with immunogenic cell death-inducing chemotherapy sensitized lung tumors to αCD40 therapy in subcutaneous and orthotopic settings. These insights into the microenvironmental regulators of response to αCD40 suggest that different tumor types would benefit from different combinations of therapies to optimize the clinical application of CD40 agonists. SIGNIFICANCE: This work highlights the temporal roles of different dendritic cell subsets in promoting CD8+ T-cell-driven responses to CD40 agonist therapy in cancer.


Assuntos
Antígenos CD40 , Células Dendríticas , Macrófagos , Neoplasias , Animais , Antígenos CD40/agonistas , Linfócitos T CD8-Positivos , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
3.
Cell Rep ; 37(13): 110171, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965415

RESUMO

Macrophages are often prominently present in the tumor microenvironment, where distinct macrophage populations can differentially affect tumor progression. Although metabolism influences macrophage function, studies on the metabolic characteristics of ex vivo tumor-associated macrophage (TAM) subsets are rather limited. Using transcriptomic and metabolic analyses, we now reveal that pro-inflammatory major histocompatibility complex (MHC)-IIhi TAMs display a hampered tricarboxylic acid (TCA) cycle, while reparative MHC-IIlo TAMs show higher oxidative and glycolytic metabolism. Although both TAM subsets rapidly exchange lactate in high-lactate conditions, only MHC-IIlo TAMs use lactate as an additional carbon source. Accordingly, lactate supports the oxidative metabolism in MHC-IIlo TAMs, while it decreases the metabolic activity of MHC-IIhi TAMs. Lactate subtly affects the transcriptome of MHC-IIlo TAMs, increases L-arginine metabolism, and enhances the T cell suppressive capacity of these TAMs. Overall, our data uncover the metabolic intricacies of distinct TAM subsets and identify lactate as a carbon source and metabolic and functional regulator of TAMs.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Lactatos/metabolismo , Neoplasias Pulmonares/patologia , Linfócitos T/imunologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Glicólise , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Complexo Principal de Histocompatibilidade , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
4.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589525

RESUMO

BACKGROUND: Modulation and depletion strategies of regulatory T cells (Tregs) constitute valid approaches in antitumor immunotherapy but suffer from severe adverse effects due to their lack of selectivity for the tumor-infiltrating (ti-)Treg population, indicating the need for a ti-Treg specific biomarker. METHODS: We employed single-cell RNA-sequencing in a mouse model of non-small cell lung carcinoma (NSCLC) to obtain a comprehensive overview of the tumor-infiltrating T-cell compartment, with a focus on ti-Treg subpopulations. These findings were validated by flow cytometric analysis of both mouse (LLC-OVA, MC38 and B16-OVA) and human (NSCLC and melanoma) tumor samples. We generated two CCR8-specific nanobodies (Nbs) that recognize distinct epitopes on the CCR8 extracellular domain. These Nbs were formulated as tetravalent Nb-Fc fusion proteins for optimal CCR8 binding and blocking, containing either an antibody-dependent cell-mediated cytotoxicity (ADCC)-deficient or an ADCC-prone Fc region. The therapeutic use of these Nb-Fc fusion proteins was evaluated, either as monotherapy or as combination therapy with anti-programmed cell death protein-1 (anti-PD-1), in both the LLC-OVA and MC38 mouse models. RESULTS: We were able to discern two ti-Treg populations, one of which is characterized by the unique expression of Ccr8 in conjunction with Treg activation markers. Ccr8 is also expressed by dysfunctional CD4+ and CD8+ T cells, but the CCR8 protein was only prominent on the highly activated and strongly T-cell suppressive ti-Treg subpopulation of mouse and human tumors, with no major CCR8-positivity found on peripheral Tregs. CCR8 expression resulted from TCR-mediated Treg triggering in an NF-κB-dependent fashion, but was not essential for the recruitment, activation nor suppressive capacity of these cells. While treatment of tumor-bearing mice with a blocking ADCC-deficient Nb-Fc did not influence tumor growth, ADCC-prone Nb-Fc elicited antitumor immunity and reduced tumor growth in synergy with anti-PD-1 therapy. Importantly, ADCC-prone Nb-Fc specifically depleted ti-Tregs in a natural killer (NK) cell-dependent fashion without affecting peripheral Tregs. CONCLUSIONS: Collectively, our findings highlight the efficacy and safety of targeting CCR8 for the depletion of tumor-promoting ti-Tregs in combination with anti-PD-1 therapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Lewis/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Depleção Linfocítica , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores CCR8/deficiência , Neoplasias Cutâneas/terapia , Linfócitos T Reguladores/imunologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Terapia Combinada , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , RNA-Seq , Receptores CCR8/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Linfócitos T Reguladores/metabolismo
5.
Cancer Immunol Res ; 9(3): 309-323, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33361087

RESUMO

IL1ß is a central mediator of inflammation. Secretion of IL1ß typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL1ß in promoting cancer progression in patients, but the underlying mechanisms are ill-defined. Here, we have shown a key role for IL1ß in driving tumor progression in two distinct mouse tumor models. Notably, activation of the inflammasome, caspase-8, as well as the pore-forming proteins GSDMD and mixed lineage kinase domain-like protein in the host were dispensable for the release of intratumoral bioactive IL1ß. Inflammasome-independent IL1ß release promoted systemic neutrophil expansion and fostered accumulation of T-cell-suppressive neutrophils in the tumor. Moreover, IL1ß was essential for neutrophil infiltration triggered by antiangiogenic therapy, thereby contributing to treatment-induced immunosuppression. Deletion of IL1ß allowed intratumoral accumulation of CD8+ effector T cells that subsequently activated tumor-associated macrophages. Depletion of either CD8+ T cells or macrophages abolished tumor growth inhibition in IL1ß-deficient mice, demonstrating a crucial role for CD8+ T-cell-macrophage cross-talk in the antitumor immune response. Overall, these results support a tumor-promoting role for IL1ß through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for release of this cytokine in tumors.


Assuntos
Interleucina-1beta/metabolismo , Neoplasias/imunologia , Neutrófilos/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Animais , Comunicação Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Knockout , Neoplasias/patologia , Neutrófilos/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Linfócitos T Citotóxicos/imunologia , Macrófagos Associados a Tumor/imunologia
6.
J Control Release ; 314: 1-11, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31626860

RESUMO

Radioimmunotherapy (RIT) aims to deliver a high radiation dose to cancer cells, while minimizing the exposure of normal cells. Typically, monoclonal antibodies are used to target the radionuclides to cancer cell surface antigens. However, antibodies face limitations due to their poor tumor penetration and suboptimal pharmacokinetics, while the expression of their target on the cancer cell surface may be gradually lost. In addition, most antigens are expressed in a limited number of tumor types. To circumvent these problems, we developed a Nanobody (Nb)-based RIT against a prominent stromal cell (stromal-targeting radioimmunotherapy or STRIT) present in nearly all tumors, the tumor-associated macrophage (TAM). Macrophage Mannose Receptor (MMR) functions as a stable molecular target on TAM residing in hypoxic areas, further allowing the delivery of a high radiation dose to the more radioresistant hypoxic tumor regions. Since MMR expression is not restricted to TAM, we first optimized a strategy to block extra-tumoral MMR to prevent therapy-induced toxicity. A 100-fold molar excess of unlabeled bivalent Nb largely blocks extra-tumoral binding of 177Lu-labeled anti-MMR Nb and prevents toxicity, while still allowing the intra-tumoral binding of the monovalent Nb. Interestingly, three doses of 177Lu-labeled anti-MMR Nb resulted in a significantly retarded tumor growth, thereby outcompeting the effects of anti-PD1, anti-VEGFR2, doxorubicin and paclitaxel in the TS/A mammary carcinoma model. Together, these data propose anti-MMR STRIT as a valid new approach for cancer treatment.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias Mamárias Experimentais/radioterapia , Radioimunoterapia/métodos , Anticorpos de Domínio Único/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Progressão da Doença , Doxorrubicina/farmacologia , Feminino , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Receptores de Superfície Celular/metabolismo , Células Estromais/imunologia
7.
Cancers (Basel) ; 11(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091774

RESUMO

Recent advances in cancer immunotherapy have mainly focused on re-activating T-cell responses against cancer cells. However, both priming and activation of effector T-cell responses against cancer-specific antigens require cross-talk with dendritic cells (DCs), which are responsible for the capturing, processing and presentation of tumour-(neo)antigens to T cells. DCs consequently constitute an essential target in efforts to generate therapeutic immunity against cancer. This review will discuss recent research that is unlocking the cancer-fighting potential of tumour-infiltrating DCs. First, the complexity of DCs in the tumour microenvironment regarding the different subsets and the difficulty of translating mouse data into equivalent human data will be briefly touched upon. Mainly, possible solutions to problems currently faced in DC-based cancer treatments will be discussed, including their infiltration into tumours, activation strategies, and antigen delivery methods. In this way, we hope to put together a broad picture of potential synergistic therapies that could be implemented to harness the full capacity of tumour-infiltrating DCs to stimulate anti-tumour immune responses in patients.

8.
Front Immunol ; 9: 2250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349530

RESUMO

Therapeutic approaches that engage immune cells to treat cancer are becoming increasingly utilized in the clinics and demonstrated durable clinical benefit in several solid tumor types. Most of the current immunotherapies focus on manipulating T cells, however, the tumor microenvironment (TME) is abundantly infiltrated by a heterogeneous population of tumor-associated myeloid cells, including tumor-associated macrophages (TAMs), tumor-associated dendritic cells (TADCs), tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). Educated by signals perceived in the TME, these cells often acquire tumor-promoting properties ultimately favoring disease progression. Upon appropriate stimuli, myeloid cells can exhibit cytoxic, phagocytic, and antigen-presenting activities thereby bolstering antitumor immune responses. Thus, depletion, reprogramming or reactivation of myeloid cells to either directly eradicate malignant cells or promote antitumor T-cell responses is an emerging field of interest. In this review, we briefly discuss the tumor-promoting and tumor-suppressive roles of myeloid cells in the TME, and describe potential therapeutic strategies in preclinical and clinical development that aim to target them to further expand the range of current treatment options.


Assuntos
Imunoterapia/métodos , Células Mieloides/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Humanos , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/patologia , Neutrófilos/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA